• Djeikup@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 year ago

        Yes, because less heat. So we can crank it higher with no drawbacks. (Simplified reasoning I dont know a lot about circuit boards)

      • skillissuer@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 year ago

        nah, you get there by using better materials in semiconductors manufacturing and more importantly better designs overall

    • orca@orcas.enjoying.yachts
      link
      fedilink
      English
      arrow-up
      0
      ·
      1 year ago
      • Much less heat output
      • Much less power usage because the components traditionally used to cool are not required (which makes it much cheaper to run)
      • Lossless power transfer which is much more efficient
    • There1snospoon7491@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      1 year ago

      Iirc (and as an extreme novice) superconductors allow for transfer of incredible amounts of energy with little to no loss, but require extreme supercooling to do so. A superconductor that doesn’t need that cooling would allow super-efficient energy transfer with very little to no cooling needed, meaning the overhead costs are reduced dramatically.

      This would be a wonder technology if proven to be true, but my understanding is most of the rest of the world is highly skeptical at the moment. It’s like having your cake and eating it too.

      • nilloc@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 year ago

        This would be a wonder technology if proven to be true, but my understanding is most of the rest of the world is highly skeptical at the moment. It’s like having your cake and eating it too.

        I’d say it’s more like simulating the best tasting cake ever in a computer, then telling everyone else to go bake it.

        Hopefully someone can figure out a process to create the material in real life (then hopefully it’s durable and eventually economical to produce).

        • aebrer@kbin.social
          link
          fedilink
          arrow-up
          0
          ·
          1 year ago

          Afaik they did build it in real life, and the paper in fact is about the process for manufacturing it, not just about the properties or simulations.

          People have replicated the simulations so far, but are still working on replicating the manufacturing process, as it has low yeild and some variability apparently

          • Maximilious@kbin.social
            link
            fedilink
            arrow-up
            0
            ·
            1 year ago

            The problem with that paper as I understand it is that the writer was recently outed for making many false claims in his research.

            • aebrer@kbin.social
              link
              fedilink
              arrow-up
              0
              ·
              1 year ago

              Interesting I hadn’t seen that. Do you have a source I could check out? There’s six authors so it’d help figure out what you’re referring to

    • asdfasdfasdf@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      1 year ago

      Way more efficiency, almost no heat generated. Quantum computers in your pocket. No need for fans in computers anymore, even for supercomputers. Way more efficiency at sending electricity long distances. Things like maglev trains and fusion reactors and MRI machines can use superconductors without needing to keep the temp at negative 450 F. Cheap MRIs mean accessible, inexpensive MRIs for all. The list goes on and on.

    • cassetti@kbin.social
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      Yep. You know how hot your phone gets when charging? Or how hot a playstation gets when gaming for hours at a time?

      That’s due to heat-loss generated by the circuits. Superconductors would allow them to run much cooler generating essentially zero heat. Which means they can run more efficiently or faster without the need for larger heatsinks or complicated expensive cooling systems.